Série 2 : Généralités sur les fonctions numériques

Exercice 1

Soit f et g les fonctions définies par $f(x) = \sqrt{x-1}$ et $g(x) = \frac{x}{x+1}$.

- 1. Déterminer l'ensemble de définition de chacune des fonctions $f;g;f\circ g;g\circ f$
- 2. Déterminer l'expression de $f \circ g(x)$; $g \circ f(x)$ et $g \circ g(x)$.

Exercice 2

1. Soit f et g les fonctions définies par : $f(x) = \frac{\sqrt{x+2}-1}{2\sqrt{x+2}+3}$ et $g(x) = \sqrt{x+2}$.

Déterminer la fonction h telle que $: f = h \circ g$.

2. Soit f et h les fonctions définies sur \mathbb{R} par : f(x) = x - 1 et $h(x) = 2x^2 + 3x - 1$. Déterminer la fonction g telle que : $h = g \circ f$.

Exercice 3

Soit f et g les fonctions définies par : $f(x) = \frac{-x}{x+2}$ et $g(x) = \sqrt{x+1}$.

- 1. Déterminer l'ensemble de définition de chacune des fonctions f : g et $g \circ f$.
- 2. Montrer que $\forall x \in]-2; +\infty[; f(x) > -1.$
- 3. Déterminer les variations de chacune des fonctions f et g. En déduire les variations de la fonction $g \circ f$.

Exercice 4

Soit f et g les fonctions définies par : $f(x) = x^2 - 2x + 2$ et $g(x) = x\sqrt{x}$.

- 1. Déterminer D l'ensemble de définition de la fonction g.
- 2. Montrer que la fonction g est strictement croissante sur D.
- 3. En déduire que pour tout $x \in [0,1]$; $g(x) \in [0,1]$.
- 4. Dresser le tableau de variations de f .
- 5. En utilisant les variations des fonctions f et g, étudier les variations de la fonction h définie sur \mathbb{R}^+ par : $h(x) = x^3 2x\sqrt{x} + 2$.

Exercice 5

Soit f et g les fonctions définies par : $f(x) = \sqrt{x}$ et $g(x) = \frac{x}{x+2}$

- 1. (a) Dresser le tableau de variations de chacune des fonctions f et g.
 - (b) Représenter dans le même repère orthonormé $(O; \vec{i}; \vec{j})$ les courbes (C_f) et (C_g) des fonctions f et g.
- 2. On considère la fonction h définie sur \mathbb{R}^+ par $:h(x) = \frac{\sqrt{x}}{2 + \sqrt{x}}$.

En utilisant la propriété de la monotonie de la composée de deux fonctions, montrer que la fonction h est croissante sur \mathbb{R}^+ , puis montrer que : $(\forall x \in \mathbb{R}^+)$; $0 \le h(x) < 1$.

Dresser le tableau de variations de f.

Exercice 6

Soit f la fonction définie par $: f(x) = \frac{x^2 - 2x + 2}{2x^2 - 4x + 3}.$

- 1. (a) Montrer que : $\forall x \in \mathbb{R} : 2x^2 4x + 3 > 0$.
 - (b) Montrer que : $\forall x \in \mathbb{R} : \frac{1}{2} < f(x) \le 1$.

- 2. Soient u et v les fonctions définies par : $u(x) = x^2 2x$ et $v(x) = \frac{x+2}{2x+3}$.
 - (a) Dresser le tableau de variation de chacune des fonctions u et v.
 - (b) En utilisant les variations de u et de v, étudier les variations de f sur les intervalles $[1; +\infty[$ et $]-\infty; 1]$.
- 3. Soit g la fonction définie par $:g(x) = \sqrt{\frac{x^2 2x + 2}{2x^2 4x + 3}}.$
 - (a) Vérifier que : $\forall x \in \mathbb{R} : \frac{\sqrt{2}}{2} < g(x) \le 1$.
 - (b) Étudier la monotonie de g sur les intervalles $[1; +\infty[$ et $]-\infty; 1]$.

Exercice 7

On considère la fonction définie par : $f(x) = x + 2 - \sqrt{x+2}$.

- 1. (a) Déterminer D, l'ensemble de définition de f.
 - (b) Montrer que : $\forall x \in D : f(x) \ge -\frac{1}{4}$.
 - (c) Résoudre dans \mathbb{R} l'équation f(x) = 2.
- 2. Soient u et v les fonctions définies par : $u(x) = x^2 x$ et $v(x) = \sqrt{x+2}$.
 - (a) Déterminer les variations de v sur son ensemble de définition et tracer sa courbe.
 - (b) Déterminer $v\left(\left[-2; -\frac{7}{4}\right]\right)$ et $v\left(\left[-\frac{7}{4}; +\infty\right]\right)$.
 - (c) Dresser le tableau de variation de u sur \mathbb{R} .
 - (d) Vérifier que : $\forall x \in D$: $f(x) = (u \circ v)(x)$. En déduire la monotonie de f sur les intervalles $\left[-2; -\frac{7}{4}\right]$ et $\left[-\frac{7}{4}; +\infty\right]$.

Exercice 8

Soit f la fonction définit par : $f(x) = \frac{x^2 - 3}{x^2 + 1}$.

- 1. Déterminer D_f le domaine de définition de f.
- 2. Vérifier que : $\forall x \in D_f$: $f(x) = 1 \frac{4}{x^2 + 1}$.
- 3. Montrer que f est bornée par -3 et 1.

Exercice 9

Soient f et g les fonctions définit par : $f(x) = \frac{x+4}{x+2}$ et $g(x) = \sqrt{x+4}$.

- 1. Donner D_f et D_g les domaines de définition de f et g.
- 2. Déterminer les points d'intersection des courbes de f et de g avec les axes du repère $(O; \vec{i}, \vec{j})$.
- 3. Construire les courbes de f et de g.
- 4. Résoudre graphiquement, dans \mathbb{R} , l'inéquation : $\frac{x+4}{x+2} \leq \sqrt{x+4}$.

Exercice 10

Soit f la fonction définit par : $f(x) = \frac{-2|x|+1}{|x|-2}$.

- 1. Vérifier que la courbe de f symétrique par rapport à l'axe des ordonnées.
- 2. Étudier les variations de f sur les intervalles $[2; +\infty[$ et $]-\infty; -2[$.
- 3. Soit g la fonction définit par : $g(x) = \frac{1}{2} \left(\frac{-4x^3 + 1}{x^3 1} \right)$.
 - (a) Vérifier que : $\forall x \in]1; +\infty[: g(x) = f(2x^3).$
 - (b) En déduire les variations de g sur l'intervalle [1; 2]